Lesson plans are subject to change as needed

Grade Level	Teacher/Room:	Daniels 214	Week of: February 13-17, 2017

Unit Vocabulary: Matrices - Chapter 4 Algebra II

Instructional Strategies Used: direct instruction, independent study, interactive instruction

$\underline{\text { Day 1 }}$
Georgia Standards of
Excellence
MGSE9-12.A.SSE. $\mathbf{1}$
Interpret expressions that
represent a quantity in terms

of its context.

MGSE9-12.A.SSE.1a

Interpret parts of an expression, such as terms, factors, and coefficients, in context.
MGSE9-12.A.SSE.1b Given situations which utilize formulas or expressions with multiple terms and/or factors, interpret the meaning (in context) of individual terms or factors.

EQ Question:

1.How can I add and subtract matrices, multiply a matrix by a scalar, and solve matrix equations

Mini Lesson:

Warm Up- Number talk-Races
Activating Strategies:
Review week 2/6-2/10
And Friday's quiz
Youtube video on Matrices
Lesson: 1. Matrix Operations
Resource/Materials:
P 203 r, rulers, examples

Day 2
Georgia Standards of
Excellence
MGSE9-12.A.SSE.1
Interpret expressions that
represent a quantity in terms
of its context.

MGSE9-12.A.SSE.1a
Interpret parts of an expression, such as terms, factors, and coefficients, in context.
MGSE9-12.A.SSE.1b
Given situations which utilize formulas or expressions with multiple terms and/or factors, interpret the meaning (in context) of individual terms or factors. EQ Question:

1. How can I multiply two matrices?

Mini Lesson:

Warm Up- Number talk-Races
Activating Strategies:
Check homework
Youtube Multiplying matrices Lesson 1 Multiply Matrices Resource/Materials: P208, youtube, Puzzle, rulers

Day 3
Georgia Standards of
Excellence
MGSE9-12.A.SSE. 1
Interpret expressions that
represent a quantity in terms

MGSE9-12.A.SSE. 1 a

Interpret parts of an expression, such as terms, factors, and coefficients, in context.
MGSE9-12.A.SSE.1b
Given situations which utilize formulas or expressions with multiple terms and/or factors, interpret the meaning (in context) of individual terms or factors. EQ Question:

1. How can I evaluate determinants of 2 X 2 and 3 X 3 Matrices?

Mini Lesson:
Warm up- Number talk-Races Activating Strategies:
Check homework, Team work Khan Academy video on determinants
Lesson Determinants (4.3)
Resource/Materials:
Practice packet, rulers, P214
Task and examples

Day 4
Georgia Standards of
Excellence
MGSE9-12.A.SSE. 1
Interpret expressions that
represent a quantity in terms

of its context.

MGSE9-12.A.SSE.1a

Interpret parts of an expression, such as terms, factors, and coefficients, in context.
MGSE9-12.A.SSE.1b
Given situations which utilize formulas or expressions with multiple terms and/or factors, interpret the meaning (in context) of individual terms or factors.
EQ Question:

1. How can I use Cramer's rule to solve systems of linear equations?

Mini Lesson:
Warm Up- Number talk-

Races

Activating Strategies:
Check homework
Station Races/Team
Competition
Lesson1. Cramer's Rule (4.3b)
Resource/Materials: Textbook, sample problems

Day 5
 Georgia Standards of Excellence
 MGSE9-12.A.SSE. 1
 Interpret expressions that represent a quantity in terms of its context.

MGSE9-12.A.SSE.1a

Interpret parts of an expression, such as terms, factors, and coefficients, in context.
MGSE9-12.A.SSE.1b Given situations which utilize formulas or expressions with multiple terms and/or factors, interpret the meaning (in context) of individual terms or factors.

EQ Question:

1. How can I demonstrate mastery of Matrices, determinants and Cramer's Rule?

Mini Lesson:

Warm Up- Number talk-Races
Activating Strategies:
Check homework/Review

Lesson:

Review/ weekly test
USA Test Prep cmptr lab
Resource/Materials:
Review, test, cmptr lab

Common Core Lesson Planning Template

Lesson plans are subject to change as needed				
Differentiation: Content/Process/Product: groups Grouping Strategy: Page 4 for group A 1 and 3 for Group B Assessment:TOD	Differentiation: Content/Process/Product: Grouping Strategy: Practice with simple 2×2 (group A) and more advanced 3 matrices multiplication for (Group B) AssessmentTOD	Differentiation: Content/Process/Product: Grouping Strategy: Practice with $2 x$ 2 determinants group A 3X3 for Group B Assessment:TOD	Differentiation: Content/Process/Product: Grouping Strategy: lesson is mainly for Group B. Students in group A continue finding determinants for 2×2 amnd 3×3 and practice multiplying matrices Assessment:TOD	Differentiation: Content/Process/Product: Grouping Strategy: USA Test Prep in Computer lab after test/quiz Assessment:TOD
Assessment : weekly test	Assessment: Weekly test	Assessment: Weekly test	Assessment: Weekly test	Assessment: Weekly test Chapter 4 Quiz : 4.1-4.3
Homework: Matrix Packet adding and subtracting	Homework: Multiplying Matrices Packet	Homework: Determinant/Cramer's Rule packet (Just the first two pages)	Homework: Determinant/Cramer's Rule packet (the last two pages)	Homework: No homework

GSE Algebra II/ Advanced Algebra Unit 6: Mathematical Modeling

Vocabulary:

Absolute Value: The absolute value of a number is the distance the number is from zero on the number line.

- Base (of a Power): The number or expression used as a factor for repeated multiplication
- Geometric Sequence: is a sequence with a constant ratio between successive terms
- Geometric Series: the expression formed by adding the terms of a geometric sequence
- Degree: The exponent of a number or expression

Degree of a Polynomial: The largest exponent of x which appears in the polynomial

- Domain: The set of x-coordinates of the set of points on a graph; the set of x-coordinates of a given set of ordered pairs. The value that is the input in a function or relation.
- Estimate: A guess about the size, cost, or quantity of something.
- Exponential: A number written with an exponent. For example, 6,3 is called an exponential expression.
- Factor: When two or more integers are multiplied, each integer is a factor of the product. "To factor" means to write the number or term as a product of its factors.
- Function: A rule of matching elements of two sets of numbers in which an input value from the first set has only one output value in the second set.
- Graph of a Function: The set of all the points on a coordinate plane whose coordinates make the rule of function true.
- Integer: The set of numbers ...,-3,-2,-1,0,1,2,3, ..
- Interest: The percent of the money on deposit (the principal) paid to a lender for the use of the principle
- Interval: A regular distance or space between values. The set of points between two numbers.
- Pattern: A set of numbers or objects that are generated by following a specific rule.
- Power: The exponent of a number or expression, which indicates the number of times the number or expression is used as a factor.

ESSENTIAL QUESTIONS

- How can an appropriate equation be built by looking at a mathematical pattern?
- How can prior knowledge of functions be used to build precise and efficient models?
- How do the multiple representation of functions aid in building more efficient and more accurate models?
- How can technology be employed to help build mathematical models, and how can it be used to assess the appropriateness of a specific model?
- How can we derive and apply the formula for the sum of a finite geometric series?
- How can both algebraic and geometric models optimize particular important values?
- How can systems of equations and inequalities be used to define feasible regions of solutions to solve problems?
- What is the purpose of building constraints for a model, including using constraints to define feasible solutions and using domain restrictions when analyzing graphs to ensure validity of a function?
- Why is revision necessary in model building?
- Why is a deep knowledge of the various types of basic mathematical functions absolutely necessary in order to build models for real-world phenomena?
- Why is building functions, including combining and composing functions, important in the process of mathematical modeling?

