Lesson plans are subject to change as needed

| Grade Level | Teacher/Room: Daniels 214 | Week of: February 6-10, 2017 |
| :--- | :--- | :--- | :--- |
| 10th-12th | | |

Unit Vocabulary: Systems of Equations- Chapter 3 Algebra II

Instructional Strategies Used: direct instruction, independent study, interactive instruction

Day 1	Day 2	Day 3	Day 4	Day 5
Georgia Standards of Excellence MGSE9-12.A.REI. 11 Represent and solve equations and inequalities graphically MGSE9-12.A.CED. 3 Represent constraints by equations or inequalities, and by systems of equation and/or inequalities, and interpret data points as possible (i.e. a solution) or not possible (i.e. a non-solution) under the established constraints	Georgia Standards of Excellence MGSE9-12.A.REI. 11 Represent and solve equations and inequalities graphically MGSE9-12.A.CED. 3 Represent constraints by equations or inequalities, and by systems of equation and/or inequalities, and interpret data points as possible (i.e. a solution) or not possible (i.e. a non-solution) under the established constraints	Georgia Standards of Excellence MGSE9-12.A.REI. 11 Represent and solve equations and inequalities graphically MGSE9-12.A.CED. 3 Represent constraints by equations or inequalities, and by systems of equation and/or inequalities, and interpret data points as possible (i.e. a solution) or not possible (i.e. a non-solution) under the established constraints	Georgia Standards of Excellence MGSE9-12.A.REI. 11 Represent and solve equations and inequalities graphically MGSE9-12.A.CED. 3 Represent constraints by equations or inequalities, and by systems of equation and/or inequalities, and interpret data points as possible (i.e. a solution) or not possible (i.e. a non-solution) under the established constraints	Georgia Standards of Excellence MGSE9-12.A.REI. 11 Represent and solve equations and inequalities graphically MGSE9-12.A.CED. 3 Represent constraints by equations or inequalities, and by systems of equation and/or inequalities, and interpret data points as possible (i.e. a solution) or not possible (i.e. a non-solution) under the established constraints
EQ Question: 1.How can I graph and solve systems of linear equations in two variables?	EQ Question: 1.How can I use algebraic methods to solve linear systems?	EQ Question: 1.How can I graph a system of linear inequalities to find the solutions of the system?	EQ Question: 1.How can I solve systems of linear equations in three variables?	EQ Question: 1. How can I demonstrate mastery of systems of equation
Mini Lesson: Warm Up- Number talk-Races Activating Strategies: Review week 1/30-2/3 And Friday's quiz Youtube video on solutions Lesson: 1. Solving Linear Systems by graphing Resource/Materials: Graph paper, rulers, examples	Mini Lesson: Warm Up- Number talk-Races Activating Strategies: Check homework Youtube teacher-made music "graphing" Lesson: Solving Linear Systems Algebraically Resource/Materials: P148, youtube, Puzzle, rulers	Mini Lesson: Warm up- Number talk-Races Activating Strategies: Check homework, Moose nutritional requirements Lesson: Graphing and Solving Systems of Linear Inequalities Resource/Materials: Practice packet, rulers, P156 Task and examples	Mini Lesson: Warm Up- Number talk- Races Activating Strategies: Check homework 3-D design Lesson1. Graphing linear equations in three variables Resource/Materials: Textbook, sample problems	Mini Lesson: Warm Up- Number talk-Races Activating Strategies: Check homework/Review Lesson: Review/ weekly test USA Test Prep cmptr lab Resource/Materials: Review, test, cmptr lab
Differentiation: Content/Process/Product: groups Grouping Strategy: Basic slope intercept for group A Advanced "Standard" form graphing	Differentiation: Content/Process/Product: Grouping Strategy: Practice with simple elimination (group A) and more advanced (Group B)	Differentiation: Content/Process/Product: Grouping Strategy: Basic slope intercept form (inequalities)for group A	Differentiation: Content/Process/Product: Grouping Strategy: lesson is mainly for Group B. Students in group A continue finding solutions using all	Differentiation: Content/Process/Product: Grouping Strategy: USA Test Prep in Computer Iab after test/quiz

Common Core Lesson Planning Template

Lesson plans are subject to change as needed

for Group B Assessment:TOD	AssessmentTOD	Advanced "Standard" form (Inequalities) graphing for Group B Assessment:TOD	three forms with two variable Assessment:TOD	
Assessment : weekly test	Assessment: Weekly test	Assessment: Weekly test	Assent:TOD Weekly test Chapter 3 : Weekly test	
Homework: Graphing Packet slope intercept	Homework: Graphing packet standard form Puzzle solving systems using algebra/substitution method	Homework: Graphing Inequality packet	Homework: Algebra II book page 181-82 $12-29$	Homework: No homework

GSE Algebra II/ Advanced Algebra Unit 6: Mathematical Modeling

Vocabulary:

Absolute Value: The absolute value of a number is the distance the number is from zero on the number line.

- Base (of a Power): The number or expression used as a factor for repeated multiplication
- Geometric Sequence: is a sequence with a constant ratio between successive terms
- Geometric Series: the expression formed by adding the terms of a geometric sequence
- Degree: The exponent of a number or expression

Degree of a Polynomial: The largest exponent of x which appears in the polynomial

- Domain: The set of x-coordinates of the set of points on a graph; the set of x-coordinates of a given set of ordered pairs. The value that is the input in a function or relation.
- Estimate: A guess about the size, cost, or quantity of something.
- Exponential: A number written with an exponent. For example, 6,3 is called an exponential expression.
- Factor: When two or more integers are multiplied, each integer is a factor of the product. "To factor" means to write the number or term as a product of its factors.
- Function: A rule of matching elements of two sets of numbers in which an input value from the first set has only one output value in the second set.
- Graph of a Function: The set of all the points on a coordinate plane whose coordinates make the rule of function true.
- Integer: The set of numbers ...,-3,-2,-1,0,1,2,3, ..
- Interest: The percent of the money on deposit (the principal) paid to a lender for the use of the principle
- Interval: A regular distance or space between values. The set of points between two numbers.
- Pattern: A set of numbers or objects that are generated by following a specific rule.
- Power: The exponent of a number or expression, which indicates the number of times the number or expression is used as a factor.

ESSENTIAL QUESTIONS

- How can an appropriate equation be built by looking at a mathematical pattern?
- How can prior knowledge of functions be used to build precise and efficient models?
- How do the multiple representation of functions aid in building more efficient and more accurate models?
- How can technology be employed to help build mathematical models, and how can it be used to assess the appropriateness of a specific model?
- How can we derive and apply the formula for the sum of a finite geometric series?
- How can both algebraic and geometric models optimize particular important values?
- How can systems of equations and inequalities be used to define feasible regions of solutions to solve problems?
- What is the purpose of building constraints for a model, including using constraints to define feasible solutions and using domain restrictions when analyzing graphs to ensure validity of a function?
- Why is revision necessary in model building?
- Why is a deep knowledge of the various types of basic mathematical functions absolutely necessary in order to build models for real-world phenomena?
- Why is building functions, including combining and composing functions, important in the process of mathematical modeling?

