Common Core Lesson Planning Template

Lesson plans are subject to change as needed							
Grade Level	Teacher/Ro	om: Daniels 214	Week of: February 6-10,	2017			
10th-12th			•				
Unit Vocabulary: Systems of Equations- Chapter 3 Algebra II							
Instructional Strategies Used: direct instruction, independent study, interactive instruction							
<u>Day 1</u>	<u>Day 2</u>	Day 3	Day 4	Day 5			
Georgia Standards of	Georgia Standards of	Georgia Standards of	Georgia Standards of	Georgia Standards of			
Excellence	Excellence	Excellence	Excellence	Excellence			
MGSE9-12.A.REI.11	MGSE9-12.A.REI.11	MGSE9-12.A.REI.11	MGSE9-12.A.REI.11	MGSE9-12.A.REI.11			
Represent and solve	Represent and solve	Represent and solve	Represent and solve	Represent and solve equations			
equations and inequalities	equations and inequalities	equations and inequalities	equations and inequalities	and inequalities graphically			
graphically	graphically	graphically	graphically	MGSE9-12.A.CED.3			
MGSE9-12.A.CED.3	MGSE9-12.A.CED.3	MGSE9-12.A.CED.3	MGSE9-12.A.CED.3	Represent constraints by			
Represent constraints by	Represent constraints by	Represent constraints by	Represent constraints by	equations or inequalities, and			
equations or inequalities, and	equations or inequalities, and	equations or inequalities, and	equations or inequalities, and	by systems of			
by systems of	by systems of	by systems of	by systems of	equation and/or inequalities,			
equation and/or inequalities,	equation and/or inequalities,	equation and/or inequalities,	equation and/or inequalities,	and interpret data points as			
and interpret data points as	and interpret data points as	and interpret data points as	and interpret data points as	possible (i.e. a solution) or not			
possible (i.e. a solution) or	possible (i.e. a solution) or	possible (i.e. a solution) or	possible (i.e. a solution) or	possible			
not possible	not possible	not possible	not possible	(i.e. a non-solution) under the			
(i.e. a non-solution) under the	(i.e. a non-solution) under the	(i.e. a non-solution) under the	(i.e. a non-solution) under	established constraints			
established constraints	established constraints	established constraints	the established constraints				
EQ Question:	EQ Question:	EQ Question:	EQ Question:	EQ Question:			
1.How can I graph and solve	1.How can I use algebraic	1.How can I graph a system	1.How can I solve systems	1. How can I demonstrate			
systems of linear equations	methods to solve linear	of linear inequalities to find	of linear equations in three	mastery of systems of			
in two variables?	systems?	the solutions of the system?	variables?	equation			
Mini Lesson:	Mini Lesson:	Mini Lesson:	Mini Lesson:	Mini Lesson:			
Warm Up- Number talk-Races	Warm Up- Number talk-Races	Warm up- Number talk-Races	Warm Up- Number talk-	Warm Up- Number talk-Races			
Activating Strategies:	Activating Strategies:	Activating Strategies:	Races	Activating Strategies:			
Review week 1/30-2/3	Check homework	Check homework, Moose	Activating Strategies:	Check homework/Review			
And Friday's quiz	Youtube teacher-made music	nutritional requirements	Check homework	Lesson:			
Youtube video on solutions	"graphing"	Lesson: Graphing and Solving	3-D design	Review/ weekly test			
Lesson: 1. Solving Linear	Lesson: Solving Linear	Systems of Linear Inequalities	Lesson1. Graphing linear	USA Test Prep cmptr lab			
Systems by graphing	Systems Algebraically	Resource/Materials:	equations in three variables	Resource/Materials:			
Resource/Materials:	Resource/Materials:	Practice packet, rulers, P156	Resource/Materials:	Review, test, cmptr lab			
Graph paper, rulers, examples	P148, youtube, Puzzle, rulers	Task and examples	Textbook, sample problems				
Differentiation:	Differentiation:	Differentiation:	Differentiation:	Differentiation:			
Content/Process/Product: groups	Content/Process/Product:	Content/Process/Product:	Content/Process/Product:	Content/Process/Product:			
Grouping Strategy: Basic slope	Grouping Strategy: Practice with	Grouping Strategy: Basic slope	Grouping Strategy: lesson is mainly	Grouping Strategy:			
intercept for group A	simple elimination (group A) and	intercept form (inequalities)for	for Group B. Students in group A	USA Test Prep in Computer lab after			
Advanced "Standard" form graphing	more advanced (Group B)	group A	continue finding solutions using all	test/quiz			

Common Core Lesson Planning Template

Lesson plans are subject to	change as needed			
for Group B Assessment:TOD	AssessmentTOD	Advanced "Standard" form (Inequalities) graphing for Group B Assessment:TOD	three forms with two variable Assessment:TOD	Assessment:TOD
Assessment : weekly test	Assessment: Weekly test	Assessment: Weekly test	Assessment: Weekly test	Assessment: Weekly test Chapter 3 : 3.1-3.5
Homework: Graphing Packet slope intercept	Homework: Graphing packet standard form Puzzle solving systems using algebra/substitution method	Homework: Graphing Inequality packet	Homework: Algebra II book page 181-82 12-29	Homework: No homework

Lesson plans are subject to change as needed

GSE Algebra II/ Advanced Algebra Unit 6: Mathematical Modeling

Vocabulary:

Absolute Value: The absolute value of a number is the distance the number is from zero on the number line.

• **Base** (of a Power): The number or expression used as a factor for repeated multiplication

• Geometric Sequence: is a sequence with a constant ratio between successive terms

- Geometric Series: the expression formed by adding the terms of a geometric sequence
- Degree: The exponent of a number or expression

Degree of a Polynomial: The largest exponent of x which appears in the polynomial

• Domain: The set of x-coordinates of the set of points on a graph; the set of x-coordinates

of a given set of ordered pairs. The value that is the input in a function or relation.

• Estimate: A guess about the size, cost, or quantity of something.

• **Exponential**: A number written with an exponent. For example, 6,3 is called an exponential expression.

• **Factor**: When two or more integers are multiplied, each integer is a factor of the product. "To factor" means to write the number or term as a product of its factors.

• Function: A rule of matching elements of two sets of numbers in which an input value from the first set has only one output value in the second set.

• **Graph of a Function**: The set of all the points on a coordinate plane whose coordinates make the rule of function true.

• **Integer**: The set of numbers ...,-3,-2,-1,0,1,2,3,...

• **Interest**: The percent of the money on deposit (the principal) paid to a lender for the use of the principle

• Interval: A regular distance or space between values. The set of points between two numbers.

• Pattern: A set of numbers or objects that are generated by following a specific rule.

• **Power**: The exponent of a number or expression, which indicates the number of times the number or expression is used as a factor.

ESSENTIAL QUESTIONS

- How can an appropriate equation be built by looking at a mathematical pattern?
- How can prior knowledge of functions be used to build precise and efficient models?
- How do the multiple representation of functions aid in building more efficient and more accurate models?
- How can technology be employed to help build mathematical models, and how can it be used to assess the appropriateness of a specific model?
- How can we derive and apply the formula for the sum of a finite geometric series?
- How can both algebraic and geometric models optimize particular important values?
- How can systems of equations and inequalities be used to define feasible regions of solutions to solve problems?
- What is the purpose of building constraints for a model, including using constraints to define feasible solutions and using domain restrictions when analyzing graphs to ensure validity of a function?
- Why is revision necessary in model building?
- Why is a deep knowledge of the various types of basic mathematical functions absolutely necessary in order to build models for real-world phenomena?
- Why is building functions, including combining and composing functions, important in the process of mathematical modeling?

Lesson plans are subject to change as needed